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Learning goals 
•  Provide examples of the types of problems for which tree data 

structures are well-suited. 
•  Describe and use preorder, inorder, and postorder tree traversal 

algorithms. 
•  Perform a binary search on an array iteratively and recursively. 
•  Describe the properties of a binary search tree. 
•  Determine if a given tree is an instance of a binary search tree. 
•  Search for keys in a binary search tree. 
•  Insert and delete keys from a binary search tree. 
•  Describe the properties of binary trees and binary search trees; and 

algorithms for navigating (e.g., searching, adding, deleting) them in 
C. 
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Abstract Data Types 

Data Structures 

Stack Queue 

Array Circular 
Array 

Linked list 

Tools 

Asymptotic Analysis 

CPSC 259 Journey  

Recursion 

 
 
 
 
 

Algorithms 

Dictionary  

Binary Search Tree 

Pointers	 

Dynamic	Memory	Alloca2on	
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Tree Terminology 
•  root: the single node with no parent 
•  leaf: a node with no children 
•  child: a node pointed to by me  
•  parent: the node that points to me 
•  Sibling: another child of my parent 
•  ancestor: my parent or my parent’s 
                   ancestor 
 
•  descendent: my child or my child’s descendent 
•  subtree: a node and its descendants 

A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	
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Tree Terminology 

A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	

•  depth: # of edges along path from root to node 
–  depth of H? 

•  3 

•  height: # of edges along 
longest path from node to leaf 
or, for whole tree, from root 
to leaf 
•  height of tree? 
•  4 
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Tree Terminology 
•  degree: # of children of a node 
–  degree of B? 

•  3 
A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	

•  branching factor: maximum 
degree of  any node in the tree 

 
2 for binary trees,   
5 for this weird tree 
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One More Tree Terminology Slide 

J	I	H	

G	F	E	D	

C	B	

A	

•  binary: branching factor of 2 (each child has at most 2 
children) 

 
•  n-ary: branching factor of n 
 
 
•  complete: “packed” binary tree; 
                  as many nodes as  
                  possible for its height 
 
•  nearly complete: complete plus some nodes on the left at 

the bottom 
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Trees and (Structural) Recursion 

A tree is either:  
–  the empty tree 
– a root node and an ordered list of subtrees 

 
 
Trees are a recursively defined structure, so it 

makes sense to operate on them recursively. 
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E

C J 

A

B

G K

F H

I Path from E to H: 

Height of tree: 

Depth of node containing G: 

Height of node containing G: 

 

D

Example 
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E

C J 

A

B

G K

F H

I 

D

Example 

Path from E to H: E J G H 

Height of tree: 4 

Depth of node containing G: 2  

Height of node containing G: 2 
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Clicker question 
•  What is the height of this tree? 

5

3 10 

1

2

7 11 

6 8

9

4

a)   0  

b)   1 

c)   2 

d)   3 

e)   4 
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Clicker question (answer) 
•  What is the height of this tree? 

5

3 10 

1

2

7 11 

6 8

9

4

a)   0  

b)   1 

c)   2 

d)   3 

e)   4 
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Clicker Question 
•  What is the depth of node 1? 

a)   0  

b)   1 

c)   2 

d)   3 

e)   4 

5

3 10 

1

2

7 11 

6 8

9

4
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Clicker Question (answer) 
•  What is the depth of node 1? 

a)   0  

b)   1 

c)   2 

d)   3 

e)   4 

5

3 10 

1

2

7 11 

6 8

9

4
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CPSC 259 Administrative Notes 
•  Lab 4 – Week1 starts today 
–  Recursion 

 
•  MT2: Next Friday 

•  Connect-Quiz and textbook exercises on Binary Search 
Trees are now available. 

•  PeerWise second call ends Friday, November 6.  
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There are three common types of binary tree 
traversal: 

Preorder:  visit the current node, then its left sub-
tree, then its right sub-tree 

Inorder:  visit the left sub-tree, then the current 
node, then the right sub-tree 

Postorder:  visit the left sub-tree, then the right 
sub-tree, then the current node 

Tree Traversal 
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Preorder:  visit the current node, then its left sub-
tree, then its right sub-tree 

Data printed using preorder traversal: 

      E C A B D I F G H J 

E

C I 

A

B

F J 

G

H

D



CPSC 259                                           Binary Trees                                                      Page 18 

Preorder:  visit the current node, then its left sub-
tree, then its right sub-tree 

Data printed using preorder traversal: 

      E C A B D I F G H J 

E

C I

A

B

F J

G

H

D

void printPreorder(BNode* node) !
{ !
  if (node == NULL) !
     return; !
    !
  /* first print data of node */!
  printf("%d ", node->item); !
    !
  /* then recur on left sutree */!
  printPreorder(node->left); !
    !
  /* now recur on right subtree */!
  printPreorder(node->right); !
}	
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Inorder:  visit the left sub-tree, then the current 
node, then the right sub-tree 

Data printed using inorder traversal: 

      A B C D E F G H I J 

E

C I 

A

B

F J 

G

H

D
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Inorder:  visit the left sub-tree, then the current 
node, then the right sub-tree 

Data printed using inorder traversal: 

      A B C D E F G H I J 

void printInorder(BNode* node) !
{ !
    if (node == NULL) !
        return; !
    !
    /* first recur on left child */!
    printInorder(node->left); !
    !
    /* then print the data of node */!
    printf("%d ", node->item); !
    !
    /* now recur on right child */!
    printInorder(node->right); !
}	

E

C I

A

B

F J

G

H

D
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Postorder:  visit the left sub-tree, then the right sub-
tree, then the current node  

Data printed using postorder traversal: 

      B A D C H G F J I E 

E

C I 

A

B

F J 

G

H

D
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Postorder:  visit the left sub-tree, then the right sub-
tree, then the current node  

Data printed using postorder traversal: 

      B A D C H G F J I E 

void printPostorder(BNode* node) !
{ !
    if (node == NULL) !
        return; !
    !
    // first recur on left subtree!
    printPostorder(node->left); !
    !
    // then recur on right subtree!
    printPostorder(node->right); !
    !
    // now deal with the node!
    printf("%d ", node->item); !
}	

E

C I

A

B

F J

G

H

D



CPSC 259                                           Binary Trees                                                      Page 23 

Preorder:  visit the current node, then its left sub-tree, then 
its right sub-tree (this is NOT a Binary Search Tree!) 

Nodes visited using 
preorder traversal: 

a)  5 8 9 2 4 3 0 6 1 7 

b)  5 8 2 9 4 3 0 1 6 7 

c)  5 8 3 2 4 0 7 9 1 6 

d)  6 1 0 7 3 5 9 2 4 8 

e)  9 2 4 8 6 1 0 7 3 5 

5

8 3

2

9

0 7

1

6

4
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Preorder:  visit the current node, then its left sub-tree, then 
its right sub-tree (this is NOT a Binary Search Tree!) 

Nodes visited using 
preorder traversal: 

a)  5 8 9 2 4 3 0 6 1 7 

b)  5 8 2 9 4 3 0 1 6 7 

c)  5 8 3 2 4 0 7 9 1 6 

d)  6 1 0 7 3 5 9 2 4 8 

e)  9 2 4 8 6 1 0 7 3 5 

5

8 3

2

9

0 7

1

6

4
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Inorder:  visit the left sub-tree, then the current node, then 
the right sub-tree (this is NOT a BST!) 

 

Nodes visited using 
inorder traversal: 

a)  5 8 2 9 4 3 0 1 6 7 

b)  5 8 3 2 4 0 7 9 1 6 

c)  6 1 0 7 3 5 9 2 4 8 

d)  2 9 8 4 5 0 1 6 3 7 

e)  9 2 4 8 6 1 0 7 3 5 

5

8 3

2

9

0 7

1

6

4
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Inorder:  visit the left sub-tree, then the current node, then 
the right sub-tree (this is NOT a BST!) 

 

Nodes visited using 
inorder traversal: 

a)  5 8 2 9 4 3 0 1 6 7 

b)  5 8 3 2 4 0 7 9 1 6 

c)  6 1 0 7 3 5 9 2 4 8 

d)  2 9 8 4 5 0 1 6 3 7 

e)  9 2 4 8 6 1 0 7 3 5 

5

8 3

2

9

0 7

1

6

4
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Postorder:  visit the left sub-tree, then the right sub-tree, 
then the current node (this is NOT a BST!) 

 
Nodes visited using 
postorder traversal: 

a)  5 8 2 9 4 3 0 1 6 7 

b)  2 9 8 4 0 1 6 7 3 5 

c)  6 1 0 7 3 5 9 2 4 8 

d)  9 2 4 8 6 1 0 7 3 5 

e)  2 9 8 4 5 0 1 6 3 7 

5

8 3

2

9

0 7

1

6

4
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Postorder:  visit the left sub-tree, then the right sub-tree, 
then the current node (this is NOT a BST!) 

 
Nodes visited using 
postorder traversal: 

a)  5 8 2 9 4 3 0 1 6 7 

b)  2 9 8 4 0 1 6 7 3 5 

c)  6 1 0 7 3 5 9 2 4 8 

d)  9 2 4 8 6 1 0 7 3 5 

e)  2 9 8 4 5 0 1 6 3 7 

5

8 3

2

9

0 7

1

6

4
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Dictionary ADT 
•  Dictionary operations 
–  create 
–  destroy 
–  insert 
–  find 
–  Delete 

 
 
•  Stores values associated with user-specified keys 
–  values may be any (homogenous) type 
–  keys may be any (homogenous) comparable type 

•  midterm 
–  would be tastier with 

brownies 
•  prog-project 

–  so painful… who 
designed this language? 

•  wolf 
–  the perfect mix of oomph 

and Scrabble value 

insert 

find(wolf) 

• 	brownies	
			-	tasty	

• 	wolf	
				-	the	perfect	mix	of	oomph		
						and	Scrabble	value	
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Search/Set ADT 
•  Dictionary operations 
–  create 
–  destroy 
–  insert 
–  find 
–  Delete 

 
•  Stores keys  
–  keys may be any (homogenous) comparable 
–  quickly tests for membership 

•  Berner 
•  Whippet 
•  Alsatian 
•  Sarplaninac 
•  Beardie 
•  Sarloos 
•  Malamute 
•  Poodle 

insert 

find(Wolf) 

• 	Min	Pin	

NOT	FOUND	
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A Modest Few Uses 
•  Arrays and “Associative” Arrays 
•  Sets 
•  Dictionaries 
•  Address books 
•  Credit card authorization 
•  Router tables 
•  Page tables 
•  Symbol tables 
•  C++ Structures 
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Naïve Implementations 

•  Linked list 
–  Unsorted 
–  Sorted 

•  Array 
–  Unsorted 
–  Sorted               

insert 
delete  

+ 
find 

find 

worst one… yet so close! 

O(1) O(n) O(n) 

delete  
after 
find 

O(1) 
O(n) O(n) O(n) O(1) 

O(1) O(n) O(n) O(1) 
O(n) O(lg n) O(n) O(n) 
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Binary Search (iterative version)  
/* Search an array, iteratively, for a given search key */!
int  search( int * array, int key, int size ){ !
    int  low = 0; !
    int  high = size - 1; !
    int  mid; !
    !
    /* Discard half of the array during each iteration. */!
    while (low <= high){ !
        mid = (low + high) / 2;  /* middle of range */!
        !
        if (array[mid] == key) !
            return mid;  /* found the search key */ !
        if (key < array[mid]) !
        /* focus on the left half of the remaining array */!
            high = mid - 1; !
        else!
        /* focus on the right half of the remaining array */!
            low = mid + 1; !
    } !
    return -1;   /* search key was not found */!
}	
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Binary Search (recursive version)  
/* Search an array, recursively, for a given search key. */!
int  search( int * array, int key, int low_index, int high_index ){ !
    int mid = ( low_index + high_index ) / 2; !
    !
    if ( high_index < low_index ) !
        return -1; /* key not found (base case) */!
    !
    if ( array[mid] > key )  /* search left half of array */!
        return search( array, key, low_index, mid - 1 ); !
    !
    else if ( array[mid] < key ) /* search right half of array */!
        return search( array, key, mid + 1, high_index ); !
    !
    else!
        return mid; /* we found the search key */!
}	
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Binary Search into Binary Search Trees 

/* Search an array, recursively, for a given search key. */!
int  search( int array[], int key, int low_index, int high_index ){ !
    int mid = ( low_index + high_index ) / 2; !
    !
    if ( high_index < low_index )  return -1;!
    if ( array[mid] > key ) return search(array, key, low_index, mid-1); !
    else if ( array[mid] < key) /* search right half of array */!
        return search( array, key, mid + 1, high_index ); !
    else   return mid; !
}	
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A	binary	search	tree	is	a	binary	tree	such	that	for	every	node	in	
the	tree,	all	of	the	entries	in	the	leN	sub-tree	(if	any)	are	smaller	
than	the	entry	in	the	node	and	all	of	the	entries	in	the	right	sub-
tree	(if	any)	are	larger	than	the	entry	in	the	node.	

6	

5	 7	

2	 3	 9	

6	

3	 7	

2	 5	 9	

a	binary	search	tree	 not	a	binary	search	tree	

Note:	there	is	no	requirement	that	a	binary	search	tree	
has	to	be	a	complete	binary	tree.	

Binary search tree  
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Binary Search Tree (Summary) 

4	

12	10	6	2	

11	5	

8	

14	

13	

7	 9	

•  Binary	tree	property	
–  each	node	has	≤	2	children	
–  result:	

• opera2ons	are	simple	

•  Search	tree	property	
–  all	keys	in	leN	subtree	smaller	than	root’s	key	
–  all	keys	in	right	subtree	larger	than	root’s	key	
–  result:	

• easy	to	find	any	given	key	
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Example and Counter-Example 

3	

11	7	1	

8	4	

5	

4	

18	10	6	2	

11	5	

8	

20	

21	BINARY SEARCH TREE 
NOT A 

BINARY SEARCH TREE 

7	

15	
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Representing Binary Search Trees 

10	
right		leN	

10	

5	

2	 7	

15	

20	

5	
right		leN	

15	
right		leN	

2	
right		leN	

7	
right		leN	

20	
right		leN	

Data	not	shown	in	figure	

struct Node { !
  KTYPE key; !
  DTYPE data; !
  Node * left; !
  Node * right; !
};	
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Binary search trees allow for fast insertion and removal of 
elements .They are specially designed for fast searching  

Searching for J: 
• Start at the root of the tree (G) 
• J is greater than G so discard the left half of the tree - 
just like binary search!   
• Consider K,  J is smaller than K, so discard the right 
half of the remaining tree. 

 

 

G

C K

A F J M

Binary Search Tree  
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Finding a node 
•  Find H in the tree 

 

E

C I 

A

B

F J 

H

D

  Find	K	in	the	tree	

	
E

C I 

A

B

F J 

H

D
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Adding a node 
•  We want to add G to the tree 

 

E

C I 

A

B

F J 

H

D

E

C I 

A

B

F J 

H

D

G
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9

4
No children is an easy case: 

Eliminate the node and the link to it 

Removing a node from a BST 

9

4
One child is an easy case: 

move the child up to replace the node 
that is erased 
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8

9

4

5

6

8

4

5

6

Two children: 

replace with predecessor 

move predecessor subtree up 

predecessor is left then 

  right, right, ... , right 

Removing a node from a BST 
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Removing a node from a BST 
OR Successor, which is right then 

left, left, ... , left 

5

3 10 

1

2

7 11 

6 8

9

4

Remove	5	 6

3 10 

2	 7 11 

8

9

4
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Removing a node from a BST 
5

3 10 

1

2

7 11 

6 8

9

4

Remove	1	 5

3 10 

2	 7 11 

6 8

9

4

5

3 10 

2	 7 11 

6 8

9

4

Remove	10	
5

3  9 

2	 7 11 

6 8

4
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BuildTree for BSTs 
•  Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an 

initially empty BST: 
–  in order 
 

– in reverse order 

– median first, then left median, right median, etc. 
so: 5, 3, 8, 2, 4, 7, 9, 1, 6  
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In-Class Exercise 
What does this tell you about strengths and weaknesses 
of BSTs? 
 
Using BSTs is only efficient if they are fairly balanced. 
Whether they are balanced is highly dependent on the 
order of the values being added. It is best to use BSTs 
when you are confident that your input values will be 
fairly random (e.g. not already sorted). 
 
There are extensions and improvements to Binary Search 
Trees such as AVL trees or red-black trees. I encourage 
you to read about them, but they are outside of the scope 
of this course. 
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What makes a balanced BST efficient for 
searching? 

Each step we take as we search the tree reduces 
the remaining search space by half.
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Sample Search 

Each step we take as we search the tree reduces 
the remaining search space by half.

Step 1
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Sample Search 

Each step we take as we search the tree reduces 
the remaining search space by half.

Step 2
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Sample Search 

Each step we take as we search the tree reduces 
the remaining search space by half.

Step 3
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Sample Search 

Each step we take as we search the tree reduces 
the remaining search space by half.

Step 4
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Sample Search 

Each step we take as we search the tree reduces 
the remaining search space by half.
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Height 

The tree has low height and all paths from the 
root node to other nodes are relatively short. 
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Unbalanced Trees 

In contrast, this unbalanced tree is very high and 
has long paths from the root to other nodes. It 
essentially has degenerated to a linked list, which is 
very slow to search through. 
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Unbalanced Trees 

Now,with each step we take, we have only reduced 
the search space by one node. 
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Time of Search 
•  Time of search is proportional to the height of the tree 

O(	lg	n	)	 O(	n	)	



CPSC 259                                           Binary Trees                                                      Page 59 

Analysis of BuildTree 

•  Worst case: O(n2) as we’ve seen 

•  Average case assuming all orderings equally likely 
turns out to be O(n lg n). 
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In-Class Exercise 

•  Draw the binary search tree, which results from 
adding the following keys in the given order: 
– 20, 10, 40, 5, 7, 2, 15, 11, 12, 6, 24, 22, 45, 41 
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In-Class Exercise 
•  From your tree remove key with value 7 

•  From your tree remove key with value 20 (using 
successor) 
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In-Class Exercise 
•  From your tree remove key with value 10 (using 

successor) 

 
 
 
 
 
 
 
 

•  From your tree remove key with value 13 
–  Item with key 13 does not exist 

•  What is the minimum/maximum  values in the tree? 
–  (2, 45) 
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BST with Arrays 
•  Use an Array 
•  Root in element 1 
•  leftChild(i) = 2i 
•  rightChild(i) = 2i+1 
•  parent(i) = i/2 

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

50	 30	 70	 10	 40	 60	 110	 100	

50 

30 70 

110 

100 

10 40 60 
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Implementation of a BST with Arrays  
•  Find 
•  Insert 
–  Think about insert(105) 

•  Delete 
–  Think about delete(50) using predecessor 

50 

30 70 

40 
60 110 

10 

100 35 

32 

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 20	

50	 30	 70	 10	 40	 60	 110	 35	 100	 32	
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Implementation of a BST with Arrays  
•  Deleting may be costly. 
•  Space complexity in the worst case is exponential 

-- O(2n)  
 

•  What other data structure(s) can we use? 
– Linked lists 
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Each node contains an item (or an arbitrary amount of data), 
a pointer to its left subtree, and a pointer to its right subtree: 

 

 
Key: item is usually a key, which is unique and allows entries 
all to be unique. There is usually a notion of data that comes 
with the key.  

  for example (student id key, student info data) 

We will now look at the implementation of some of the 
operations listed earlier. To begin, we will write a 
makeNode function to create a new BNode as needed. 

Implementation of a BST with linked lists 

struct BNode{ !
    int             item; !
    struct BNode *  left; !
    struct BNode *  right; !
};	
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Creating a BNode 
!
/* a new node is created and its address is returned */!
!
BNode * makeNode(int item, BNode * leftChild, BNode * rightChild){ !
  BNode *  temp; !
  temp = ( BNode *) malloc(sizeof(BNode)); !
  !
  temp->item = item; !
  temp->left = leftChild; !
  temp->right = rightChild; !
  !
  return temp; !
}	

/* create a new tree */!
BNode* createTree(int item){ !
  return makeNode(item, NULL, NULL); !
} !
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Creating a Bnode exercise  

•  Draw the resultant tree 

•  Draw the resultant tree 
 

200	

NULL	

myTreeRoot = makeNode(200, makeNode(100, NULL, NULL), NULL); !
	

100	

NULL	NULL	

BNode* root = createTree(10);	

10	

NULL	NULL	
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Finding a BNode 
 /*  Assuming root points to the root of a binary tree, if item is !
  *  in the tree, return the address of its node; otherwise, return NULL !
  */!
BNode * find(BNode * root, int item){ !
  if (root == NULL  ||  root->item == item) !
    return root; !
  !
  if (item < root->item) !
    return find(root->left, item); !
  else!
    return find(root->right, item); !
}	
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Finding a Bnode exercise  
•  For the BST on the right draw the 

recursion tree of find(ptrTo6, 5) 

Find(ptrTo6, 5) 

Find(ptrTo3, 5) 

Find(ptrTo5, 5) 

ptrTo5 

ptrTo5 

ptrTo5 

6	

3	 7	

2	 5	 9	
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Adding a BNode 
/*  Assuming root points to the root of a binary tree, and items are !
 *   unique. !
void addNode( BNode * root, int item){ !
  !
  if (item < root->item){ !
    if (root->left)  /*  same as root->left!=NULL */!
      addNode(root->left, item); !
    else!
      root->left = makeNode(item, NULL, NULL); !
  } !
  !
  if (item > root->item){ !
    if (root->right) /*  same as root->right!=NULL */!
      addNode(root->right, item); !
    else!
      root->right = makeNode(item, NULL, NULL); !
  } !
} !
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Adding a Bnode exercise  
•  For the BST on the right draw the 

recursion tree of addNode(ptrTo6, 8) !

•  What happens if you attempt to add an 
existing node ?  

addNode(ptrTo6, 8) 

addNode(ptrTo7, 8) 

addNode(ptrTo9, 8) 

makeNode(8, NULL, NULL 

ptrTo8 

6	

3	 7	

2	 5	 9	
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Finding parent of a BNode 
/** !
 * Finds the parent of node in the tree rooted at rootNode!
 */!
BNode* findParent( BNode * root, int item) !
{ !
  if (root == NULL || root->item == item) !
    return NULL; !
  !
  else if (root->left && (root->left->item == item)) !
    return root; !
  !
  else if (root->right && (root->right->item == item)) !
    return root; !
  !
  else if (item < root->item ) !
    return findParent(root->left, item); !
  !
  else!
    return findParent(root->right, item); !
}	
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Finding parent of a Bnode exercise  
•  For the BST on the right draw the 

recursion tree of findParent(ptrTo6, 5) !

•  What should be returned if we want to 
find parent of 6? 

findParent(ptrTo6, 5) 

findParent(ptrTo3, 5) 

ptrTo3 

ptrTo3 

6	

3	 7	

2	 5	 9	
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Bonus: FindMin/FindMax 
•  Find minimum 

 

•  Find maximum 20	9	2	

15	5	

10	

30	7	 17	

BNode* findMin(BNode* root){ !
  if (!root) return NULL; !
  !
  else if (!root->left) return root; !
  !
  else!
    return findMin(root->left); !
}	

BNode* findMax(BNode* root){ !
  if (!root) return NULL; !
  !
  else if (!root->right) return root; !
!
  else!
    return findMax(root->right); !
}	
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Double Bonus: Successor 

Find the next larger node 
in a node’s subtree. 
 20	9	2	

15	5	

10	

30	7	 17	

BNode* findSucessor( BNode * theNode){ !
  if (theNode==NULL || theNode->right==NULL) !
    return NULL; !
  !
  else!
    return findMin(theNode->right); !
}	
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More Double Bonus: Predecessor 

Find the next smaller node 
in a node’s subtree. 
 
 
 

20	9	2	

15	5	

10	

30	7	 17	

BNode* findPredecessor( BNode * theNode){ !
  if (theNode==NULL || theNode->left==NULL) !
    return NULL; !
  !
  else!
    return findMax(theNode->left); !
}	
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Deletion 

20	9	2	

15	5	

10	

30	7	 17	

Why might deletion be harder than insertion? 
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Deleting a BNode 
•  The task of removing a node from a binary tree is quite 

complicated;  therefore, we will break the task into parts. 

struct BNode* deleteNode(struct BNode* root, int item) !
{ !
  struct BNode* target = find(root, item); !
  struct BNode* parent = findParent(root, item); !
!
  if (!target) !
    return root; /* item not in tree */ !
!
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Deleting a BNode (leaf case) 
•  Now that we have a pointer that points to the node to be 

deleted, we proceed according to one of 4 cases: 

•  Case 1:  node to be deleted is a leaf 
if (target->left == NULL && target->right ==NULL){ !
/* --------------------- leaf------------------ */!
     if (parent != NULL) !
         if (parent->left == target)) !
             parent ->left = NULL; !
         else!
             parent ->right = NULL; !
        !
    else // parent == NULL!
        root = NULL; !
    free(target); !
    return root; !
} !
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Deleting a BNode (leaf case) exercise  
•  Trace the code to see what the tree would 

look like after deleteNode(ptrTo6, 5)has 
been executed !

 

6	

3	 7	

5	 9	

6	

3	 7	

5	 9	

root	

target	

parent	

6	

3	 7	

9	

root	

target	

parent	

check to see which child of parent  
needs to be updated to NULL 
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Deleting a BNode (one child) 
•  Case 2: node to be deleted has only a left child 

 if (target->left != NULL && target->right == NULL){ !
 /* ---------------- Only left child------------ */        !
     !
    if (parent != NULL) { !
         if ( parent->left == target ) !
        parent->left = target->left; !
         else!

parent->right = target->left; !
    } !
    else // parent == NULL!
      root = target->left; !
        !
    free(target); !
    return root; !
 } !
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Deleting a BNode (one child) 
•  Case 3: node to be deleted has only a right child 

if (target->left == NULL && target->right !=NULL){ !
 /* ------------ Only right child------ */!
            !
    if (parent != NULL) { !
        if ( parent->left == target ) !
               parent->left = target->right; !
        else!
               parent->right = target->right; !
    } !
    else!
        root = target->right; !
            !
    free(target); !
    return root; !
} !
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Deleting a BNode (one child) exercise  
•  Trace the code to see what the tree would 

look like after deleteNode(ptrTo6, 7) has 
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	

target	

parent	

6	

3	 9	

2	 5	

root	

target	

parent	
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Deleting a BNode (both children) 
•  Case 4: node to be deleted has both a left and right child 

•  This is the tricky case.  There is no obvious way to remove 
a node having two children and re-connect the tree.  
Instead, we can choose not to delete the node, but rather 
copy data from either a leaf node or one with just the left 
child (which is easy to remove)  
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Deleting a BNode (both children) 
 if (target->left != NULL && target->right != NULL) { !
    !
    /* find the replacing node and its parent */!
    BNode* pred = findPredecessor(target); !
    BNode* predParent = findParent(root, pred->item); !
    !
    target->item = pred->item; !
    if (target == predParent) /* replaced by left child */!
      predParent->left = pred->left; !
    else!
    /* could either be Null or temp has a left child */!
      predParent->right = pred->left; !
    !
    free(pred); !
    pred = NULL; !
  } !
  !
  return root; // return root when you're done. !
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Deleting a BNode (both children) exercise  
•  Trace the code to see what the tree would 

look like after deleteNode(ptrTo6, 3) has 
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	

target	

pred	

predParent	

6	

2	 7	

9	

root	

target	

pred	 predParent	

 predParent->left = pred->left; /* replaced by left child */!

5	
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Deleting a BNode (both children) exercise  
•  Trace the code to see what the tree would 

look like after deleteNode(ptrTo6, 6) has 
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	
target	

pred	

predParent	

5	

3	 7	

2	 9	

root	
target	

pred	 predParent	

 predParent->right = pred->left; !
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Deleting a BNode (both children) exercise  
•  Trace the code to see what the tree would 

look like after deleteNode(ptrTo6, 6) has 
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	
target	

pred	

predParent	

5	

3	 7	

2	 9	

root	
target	

pred	 predParent	

4	

4	

4	

Focus on this 4 

 predParent->right = pred->left; !
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In-class Exercise 
•  Is this code correct?  If yes, briefly justify your answer; if no, 

draw a small tree for which the code gives the wrong answer. 

// Returns 1 if the tree rooted at x is a BST, 0 otherwise!
int check_bst(Node * x){ !
  if (x == NULL) return 1; !
!
  if ((x->left != NULL) && (x->left->key > x->key)) !
    return 0; !
  if ((x->right != NULL) && (x->right->key < x->key)) !
    return 0; !
  !
  return check_bst(x->left) && check_bst(x->right); !
}	
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In-class Exercise 
// Returns 1 if the tree rooted at x is a BST, 0 otherwise!
int check_bst(Node * x){ !
  if (x == NULL) return 1; !
!
  if ((x->left != NULL) && (x->left->key > x->key)) !
    return 0; !
  if ((x->right != NULL) && (x->right->key < x->key)) !
    return 0; !
  !
  return check_bst(x->left) && check_bst(x->right); !
}	
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An Application of pre-order traversing 
•  Suppose we want to transmit our tree across the country to 

another programmer. Sending the in-order list would tell 
them the values, but would not communicate how the tree 
is built. 

•  All of the tree below have the in-order walk: 1 2 3. But 
only one of the trees below has the pre-order walk 1 2 3. 
–  Note that we expect the tree to hold the BST property 
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In-class exercise 
•  Can you recover the binary search tree from its pre-

order traversal? 
– 15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23 
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An Application of in-order traversing 

6	

3	 7	

2	 5	 9	
Sorting values in a binary search tree 

In-order = 2, 3, 5, 6, 7, 9 
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Traverse the tree in post-order (left, right, current) 

      3 2 + 5 * 1 – 

Use a stack to compute the value 

 

–

* 1

+

23

5

An Application of post-order traversing 

Character 
scanned Stack 

3 3 
2 3, 2 
+ 5 
5 5, 5 
* 25 
1 25,1 
- 24 
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Learning goals revisited 
•  Provide examples of the types of problems for which tree data 

structures are well-suited. 
•  Describe and use preorder, inorder, and postorder tree traversal 

algorithms. 
•  Perform a binary search on an array iteratively and recursively. 
•  Describe the properties of a binary search tree. 
•  Determine if a given tree is an instance of a binary search tree. 
•  Search for keys in a binary search tree. 
•  Insert and delete keys from a binary search tree. 
•  Describe the properties of binary trees and binary search trees; and 

algorithms for navigating (e.g., searching, adding, deleting) them in 
C. 

 


