
CPSC 259 Binary Trees Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Binary Trees

 Thareja (1st edition): Chapter 10, pages 406-417
 Thareja (1st edition): Chapter 11, pages 428-447
 Thareja (2nd edition): Chapter 9, pages 279- 290
 Thareja (2nd edition): Chapter 10, pages 298- 311

Hassan Khosravi

CPSC 259 Binary Trees Page 2

Learning goals
•  Provide examples of the types of problems for which tree data

structures are well-suited.
•  Describe and use preorder, inorder, and postorder tree traversal

algorithms.
•  Perform a binary search on an array iteratively and recursively.
•  Describe the properties of a binary search tree.
•  Determine if a given tree is an instance of a binary search tree.
•  Search for keys in a binary search tree.
•  Insert and delete keys from a binary search tree.
•  Describe the properties of binary trees and binary search trees; and

algorithms for navigating (e.g., searching, adding, deleting) them in
C.

CPSC 259 Binary Trees Page 3

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic Analysis

CPSC 259 Journey

Recursion

Algorithms

Dictionary

Binary Search Tree

Pointers	

Dynamic	Memory	Alloca2on	
	

CPSC 259 Binary Trees Page 4

Tree Terminology
•  root: the single node with no parent
•  leaf: a node with no children
•  child: a node pointed to by me
•  parent: the node that points to me
•  Sibling: another child of my parent
•  ancestor: my parent or my parent’s
 ancestor

•  descendent: my child or my child’s descendent
•  subtree: a node and its descendants

A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	

CPSC 259 Binary Trees Page 5

Tree Terminology

A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	

•  depth: # of edges along path from root to node
–  depth of H?

•  3

•  height: # of edges along
longest path from node to leaf
or, for whole tree, from root
to leaf
•  height of tree?
•  4

CPSC 259 Binary Trees Page 6

Tree Terminology
•  degree: # of children of a node
–  degree of B?

•  3
A	

E	

B	

D	 F	

C	

G	

I	H	

L	J	 M	K	 N	

•  branching factor: maximum
degree of any node in the tree

2 for binary trees,
5 for this weird tree

CPSC 259 Binary Trees Page 7

One More Tree Terminology Slide

J	I	H	

G	F	E	D	

C	B	

A	

•  binary: branching factor of 2 (each child has at most 2
children)

•  n-ary: branching factor of n

•  complete: “packed” binary tree;
 as many nodes as
 possible for its height

•  nearly complete: complete plus some nodes on the left at

the bottom

CPSC 259 Binary Trees Page 8

Trees and (Structural) Recursion

A tree is either:
–  the empty tree
– a root node and an ordered list of subtrees

Trees are a recursively defined structure, so it

makes sense to operate on them recursively.

CPSC 259 Binary Trees Page 9

E

C J

A

B

G K

F H

I Path from E to H:

Height of tree:

Depth of node containing G:

Height of node containing G:

D

Example

CPSC 259 Binary Trees Page 10

E

C J

A

B

G K

F H

I

D

Example

Path from E to H: E J G H

Height of tree: 4

Depth of node containing G: 2

Height of node containing G: 2

CPSC 259 Binary Trees Page 11

Clicker question
•  What is the height of this tree?

5

3 10

1

2

7 11

6 8

9

4

a)  0

b)  1

c)  2

d)  3

e)  4

CPSC 259 Binary Trees Page 12

Clicker question (answer)
•  What is the height of this tree?

5

3 10

1

2

7 11

6 8

9

4

a)  0

b)  1

c)  2

d)  3

e)  4

CPSC 259 Binary Trees Page 13

Clicker Question
•  What is the depth of node 1?

a)  0

b)  1

c)  2

d)  3

e)  4

5

3 10

1

2

7 11

6 8

9

4

CPSC 259 Binary Trees Page 14

Clicker Question (answer)
•  What is the depth of node 1?

a)  0

b)  1

c)  2

d)  3

e)  4

5

3 10

1

2

7 11

6 8

9

4

CPSC 259 Binary Trees Page 15

CPSC 259 Administrative Notes
•  Lab 4 – Week1 starts today
–  Recursion

•  MT2: Next Friday

•  Connect-Quiz and textbook exercises on Binary Search
Trees are now available.

•  PeerWise second call ends Friday, November 6.

CPSC 259 Binary Trees Page 16

There are three common types of binary tree
traversal:

Preorder: visit the current node, then its left sub-
tree, then its right sub-tree

Inorder: visit the left sub-tree, then the current
node, then the right sub-tree

Postorder: visit the left sub-tree, then the right
sub-tree, then the current node

Tree Traversal

CPSC 259 Binary Trees Page 17

Preorder: visit the current node, then its left sub-
tree, then its right sub-tree

Data printed using preorder traversal:

 E C A B D I F G H J

E

C I

A

B

F J

G

H

D

CPSC 259 Binary Trees Page 18

Preorder: visit the current node, then its left sub-
tree, then its right sub-tree

Data printed using preorder traversal:

 E C A B D I F G H J

E

C I

A

B

F J

G

H

D

void printPreorder(BNode* node) !
{ !
 if (node == NULL) !
 return; !
 !
 /* first print data of node */!
 printf("%d ", node->item); !
 !
 /* then recur on left sutree */!
 printPreorder(node->left); !
 !
 /* now recur on right subtree */!
 printPreorder(node->right); !
}	

CPSC 259 Binary Trees Page 19

Inorder: visit the left sub-tree, then the current
node, then the right sub-tree

Data printed using inorder traversal:

 A B C D E F G H I J

E

C I

A

B

F J

G

H

D

CPSC 259 Binary Trees Page 20

Inorder: visit the left sub-tree, then the current
node, then the right sub-tree

Data printed using inorder traversal:

 A B C D E F G H I J

void printInorder(BNode* node) !
{ !
 if (node == NULL) !
 return; !
 !
 /* first recur on left child */!
 printInorder(node->left); !
 !
 /* then print the data of node */!
 printf("%d ", node->item); !
 !
 /* now recur on right child */!
 printInorder(node->right); !
}	

E

C I

A

B

F J

G

H

D

CPSC 259 Binary Trees Page 21

Postorder: visit the left sub-tree, then the right sub-
tree, then the current node

Data printed using postorder traversal:

 B A D C H G F J I E

E

C I

A

B

F J

G

H

D

CPSC 259 Binary Trees Page 22

Postorder: visit the left sub-tree, then the right sub-
tree, then the current node

Data printed using postorder traversal:

 B A D C H G F J I E

void printPostorder(BNode* node) !
{ !
 if (node == NULL) !
 return; !
 !
 // first recur on left subtree!
 printPostorder(node->left); !
 !
 // then recur on right subtree!
 printPostorder(node->right); !
 !
 // now deal with the node!
 printf("%d ", node->item); !
}	

E

C I

A

B

F J

G

H

D

CPSC 259 Binary Trees Page 23

Preorder: visit the current node, then its left sub-tree, then
its right sub-tree (this is NOT a Binary Search Tree!)

Nodes visited using
preorder traversal:

a)  5 8 9 2 4 3 0 6 1 7

b)  5 8 2 9 4 3 0 1 6 7

c)  5 8 3 2 4 0 7 9 1 6

d)  6 1 0 7 3 5 9 2 4 8

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 24

Preorder: visit the current node, then its left sub-tree, then
its right sub-tree (this is NOT a Binary Search Tree!)

Nodes visited using
preorder traversal:

a)  5 8 9 2 4 3 0 6 1 7

b)  5 8 2 9 4 3 0 1 6 7

c)  5 8 3 2 4 0 7 9 1 6

d)  6 1 0 7 3 5 9 2 4 8

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 25

Inorder: visit the left sub-tree, then the current node, then
the right sub-tree (this is NOT a BST!)

Nodes visited using
inorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  5 8 3 2 4 0 7 9 1 6

c)  6 1 0 7 3 5 9 2 4 8

d)  2 9 8 4 5 0 1 6 3 7

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 26

Inorder: visit the left sub-tree, then the current node, then
the right sub-tree (this is NOT a BST!)

Nodes visited using
inorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  5 8 3 2 4 0 7 9 1 6

c)  6 1 0 7 3 5 9 2 4 8

d)  2 9 8 4 5 0 1 6 3 7

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 27

Postorder: visit the left sub-tree, then the right sub-tree,
then the current node (this is NOT a BST!)

Nodes visited using
postorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  2 9 8 4 0 1 6 7 3 5

c)  6 1 0 7 3 5 9 2 4 8

d)  9 2 4 8 6 1 0 7 3 5

e)  2 9 8 4 5 0 1 6 3 7

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 28

Postorder: visit the left sub-tree, then the right sub-tree,
then the current node (this is NOT a BST!)

Nodes visited using
postorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  2 9 8 4 0 1 6 7 3 5

c)  6 1 0 7 3 5 9 2 4 8

d)  9 2 4 8 6 1 0 7 3 5

e)  2 9 8 4 5 0 1 6 3 7

5

8 3

2

9

0 7

1

6

4

CPSC 259 Binary Trees Page 29

Dictionary ADT
•  Dictionary operations
–  create
–  destroy
–  insert
–  find
–  Delete

•  Stores values associated with user-specified keys
–  values may be any (homogenous) type
–  keys may be any (homogenous) comparable type

•  midterm
–  would be tastier with

brownies
•  prog-project

–  so painful… who
designed this language?

•  wolf
–  the perfect mix of oomph

and Scrabble value

insert

find(wolf)

• 	brownies	
			-	tasty	

• 	wolf	
				-	the	perfect	mix	of	oomph		
						and	Scrabble	value	

CPSC 259 Binary Trees Page 30

Search/Set ADT
•  Dictionary operations
–  create
–  destroy
–  insert
–  find
–  Delete

•  Stores keys
–  keys may be any (homogenous) comparable
–  quickly tests for membership

•  Berner
•  Whippet
•  Alsatian
•  Sarplaninac
•  Beardie
•  Sarloos
•  Malamute
•  Poodle

insert

find(Wolf)

• 	Min	Pin	

NOT	FOUND	

CPSC 259 Binary Trees Page 31

A Modest Few Uses
•  Arrays and “Associative” Arrays
•  Sets
•  Dictionaries
•  Address books
•  Credit card authorization
•  Router tables
•  Page tables
•  Symbol tables
•  C++ Structures

CPSC 259 Binary Trees Page 32

Naïve Implementations

•  Linked list
–  Unsorted
–  Sorted

•  Array
–  Unsorted
–  Sorted

insert
delete

+
find

find

worst one… yet so close!

O(1) O(n) O(n)

delete
after
find

O(1)
O(n) O(n) O(n) O(1)

O(1) O(n) O(n) O(1)
O(n) O(lg n) O(n) O(n)

CPSC 259 Binary Trees Page 33

Binary Search (iterative version)
/* Search an array, iteratively, for a given search key */!
int search(int * array, int key, int size){ !
 int low = 0; !
 int high = size - 1; !
 int mid; !
 !
 /* Discard half of the array during each iteration. */!
 while (low <= high){ !
 mid = (low + high) / 2; /* middle of range */!
 !
 if (array[mid] == key) !
 return mid; /* found the search key */ !
 if (key < array[mid]) !
 /* focus on the left half of the remaining array */!
 high = mid - 1; !
 else!
 /* focus on the right half of the remaining array */!
 low = mid + 1; !
 } !
 return -1; /* search key was not found */!
}	
	

CPSC 259 Binary Trees Page 34

Binary Search (recursive version)
/* Search an array, recursively, for a given search key. */!
int search(int * array, int key, int low_index, int high_index){ !
 int mid = (low_index + high_index) / 2; !
 !
 if (high_index < low_index) !
 return -1; /* key not found (base case) */!
 !
 if (array[mid] > key) /* search left half of array */!
 return search(array, key, low_index, mid - 1); !
 !
 else if (array[mid] < key) /* search right half of array */!
 return search(array, key, mid + 1, high_index); !
 !
 else!
 return mid; /* we found the search key */!
}	

CPSC 259 Binary Trees Page 35

Binary Search into Binary Search Trees

/* Search an array, recursively, for a given search key. */!
int search(int array[], int key, int low_index, int high_index){ !
 int mid = (low_index + high_index) / 2; !
 !
 if (high_index < low_index) return -1;!
 if (array[mid] > key) return search(array, key, low_index, mid-1); !
 else if (array[mid] < key) /* search right half of array */!
 return search(array, key, mid + 1, high_index); !
 else return mid; !
}	

CPSC 259 Binary Trees Page 36

A	binary	search	tree	is	a	binary	tree	such	that	for	every	node	in	
the	tree,	all	of	the	entries	in	the	leN	sub-tree	(if	any)	are	smaller	
than	the	entry	in	the	node	and	all	of	the	entries	in	the	right	sub-
tree	(if	any)	are	larger	than	the	entry	in	the	node.	

6	

5	 7	

2	 3	 9	

6	

3	 7	

2	 5	 9	

a	binary	search	tree	 not	a	binary	search	tree	

Note:	there	is	no	requirement	that	a	binary	search	tree	
has	to	be	a	complete	binary	tree.	

Binary search tree

CPSC 259 Binary Trees Page 37

Binary Search Tree (Summary)

4	

12	10	6	2	

11	5	

8	

14	

13	

7	 9	

•  Binary	tree	property	
–  each	node	has	≤	2	children	
–  result:	

• opera2ons	are	simple	

•  Search	tree	property	
–  all	keys	in	leN	subtree	smaller	than	root’s	key	
–  all	keys	in	right	subtree	larger	than	root’s	key	
–  result:	

• easy	to	find	any	given	key	

CPSC 259 Binary Trees Page 38

Example and Counter-Example

3	

11	7	1	

8	4	

5	

4	

18	10	6	2	

11	5	

8	

20	

21	BINARY SEARCH TREE
NOT A

BINARY SEARCH TREE

7	

15	

CPSC 259 Binary Trees Page 39

Representing Binary Search Trees

10	
right		leN	

10	

5	

2	 7	

15	

20	

5	
right		leN	

15	
right		leN	

2	
right		leN	

7	
right		leN	

20	
right		leN	

Data	not	shown	in	figure	

struct Node { !
 KTYPE key; !
 DTYPE data; !
 Node * left; !
 Node * right; !
};	

CPSC 259 Binary Trees Page 40

Binary search trees allow for fast insertion and removal of
elements .They are specially designed for fast searching

Searching for J:
• Start at the root of the tree (G)
• J is greater than G so discard the left half of the tree -
just like binary search!
• Consider K, J is smaller than K, so discard the right
half of the remaining tree.

G

C K

A F J M

Binary Search Tree

CPSC 259 Binary Trees Page 41

Finding a node
•  Find H in the tree

E

C I

A

B

F J

H

D

  Find	K	in	the	tree	

	
E

C I

A

B

F J

H

D

CPSC 259 Binary Trees Page 42

Adding a node
•  We want to add G to the tree

E

C I

A

B

F J

H

D

E

C I

A

B

F J

H

D

G

CPSC 259 Binary Trees Page 43

9

4
No children is an easy case:

Eliminate the node and the link to it

Removing a node from a BST

9

4
One child is an easy case:

move the child up to replace the node
that is erased

CPSC 259 Binary Trees Page 44

8

9

4

5

6

8

4

5

6

Two children:

replace with predecessor

move predecessor subtree up

predecessor is left then

 right, right, ... , right

Removing a node from a BST

CPSC 259 Binary Trees Page 45

Removing a node from a BST
OR Successor, which is right then

left, left, ... , left

5

3 10

1

2

7 11

6 8

9

4

Remove	5	 6

3 10

2	 7 11

8

9

4

CPSC 259 Binary Trees Page 46

Removing a node from a BST
5

3 10

1

2

7 11

6 8

9

4

Remove	1	 5

3 10

2	 7 11

6 8

9

4

5

3 10

2	 7 11

6 8

9

4

Remove	10	
5

3 9

2	 7 11

6 8

4

CPSC 259 Binary Trees Page 47

BuildTree for BSTs
•  Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an

initially empty BST:
–  in order

– in reverse order

– median first, then left median, right median, etc.
so: 5, 3, 8, 2, 4, 7, 9, 1, 6

CPSC 259 Binary Trees Page 48

In-Class Exercise
What does this tell you about strengths and weaknesses
of BSTs?

Using BSTs is only efficient if they are fairly balanced.
Whether they are balanced is highly dependent on the
order of the values being added. It is best to use BSTs
when you are confident that your input values will be
fairly random (e.g. not already sorted).

There are extensions and improvements to Binary Search
Trees such as AVL trees or red-black trees. I encourage
you to read about them, but they are outside of the scope
of this course.

CPSC 259 Binary Trees Page 49

What makes a balanced BST efficient for
searching?

Each step we take as we search the tree reduces
the remaining search space by half.

CPSC 259 Binary Trees Page 50

Sample Search

Each step we take as we search the tree reduces
the remaining search space by half.

Step 1

CPSC 259 Binary Trees Page 51

Sample Search

Each step we take as we search the tree reduces
the remaining search space by half.

Step 2

CPSC 259 Binary Trees Page 52

Sample Search

Each step we take as we search the tree reduces
the remaining search space by half.

Step 3

CPSC 259 Binary Trees Page 53

Sample Search

Each step we take as we search the tree reduces
the remaining search space by half.

Step 4

CPSC 259 Binary Trees Page 54

Sample Search

Each step we take as we search the tree reduces
the remaining search space by half.

CPSC 259 Binary Trees Page 55

Height

The tree has low height and all paths from the
root node to other nodes are relatively short.

CPSC 259 Binary Trees Page 56

Unbalanced Trees

In contrast, this unbalanced tree is very high and
has long paths from the root to other nodes. It
essentially has degenerated to a linked list, which is
very slow to search through.

CPSC 259 Binary Trees Page 57

Unbalanced Trees

Now,with each step we take, we have only reduced
the search space by one node.

CPSC 259 Binary Trees Page 58

Time of Search
•  Time of search is proportional to the height of the tree

O(lg	n)	 O(n)	

CPSC 259 Binary Trees Page 59

Analysis of BuildTree

•  Worst case: O(n2) as we’ve seen

•  Average case assuming all orderings equally likely
turns out to be O(n lg n).

CPSC 259 Binary Trees Page 60

In-Class Exercise

•  Draw the binary search tree, which results from
adding the following keys in the given order:
– 20, 10, 40, 5, 7, 2, 15, 11, 12, 6, 24, 22, 45, 41

CPSC 259 Binary Trees Page 61

In-Class Exercise
•  From your tree remove key with value 7

•  From your tree remove key with value 20 (using
successor)

CPSC 259 Binary Trees Page 62

In-Class Exercise
•  From your tree remove key with value 10 (using

successor)

•  From your tree remove key with value 13
–  Item with key 13 does not exist

•  What is the minimum/maximum values in the tree?
–  (2, 45)

CPSC 259 Binary Trees Page 63

BST with Arrays
•  Use an Array
•  Root in element 1
•  leftChild(i) = 2i
•  rightChild(i) = 2i+1
•  parent(i) = i/2

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	

50	 30	 70	 10	 40	 60	 110	 100	

50

30 70

110

100

10 40 60

CPSC 259 Binary Trees Page 64

Implementation of a BST with Arrays
•  Find
•  Insert
–  Think about insert(105)

•  Delete
–  Think about delete(50) using predecessor

50

30 70

40
60 110

10

100 35

32

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 20	

50	 30	 70	 10	 40	 60	 110	 35	 100	 32	

CPSC 259 Binary Trees Page 65

Implementation of a BST with Arrays
•  Deleting may be costly.
•  Space complexity in the worst case is exponential

-- O(2n)

•  What other data structure(s) can we use?
– Linked lists

CPSC 259 Binary Trees Page 66

Each node contains an item (or an arbitrary amount of data),
a pointer to its left subtree, and a pointer to its right subtree:

Key: item is usually a key, which is unique and allows entries
all to be unique. There is usually a notion of data that comes
with the key.

 for example (student id key, student info data)

We will now look at the implementation of some of the
operations listed earlier. To begin, we will write a
makeNode function to create a new BNode as needed.

Implementation of a BST with linked lists

struct BNode{ !
 int item; !
 struct BNode * left; !
 struct BNode * right; !
};	

CPSC 259 Binary Trees Page 67

Creating a BNode
!
/* a new node is created and its address is returned */!
!
BNode * makeNode(int item, BNode * leftChild, BNode * rightChild){ !
 BNode * temp; !
 temp = (BNode *) malloc(sizeof(BNode)); !
 !
 temp->item = item; !
 temp->left = leftChild; !
 temp->right = rightChild; !
 !
 return temp; !
}	

/* create a new tree */!
BNode* createTree(int item){ !
 return makeNode(item, NULL, NULL); !
} !

CPSC 259 Binary Trees Page 68

Creating a Bnode exercise

•  Draw the resultant tree

•  Draw the resultant tree

200	

NULL	

myTreeRoot = makeNode(200, makeNode(100, NULL, NULL), NULL); !
	

100	

NULL	NULL	

BNode* root = createTree(10);	

10	

NULL	NULL	

CPSC 259 Binary Trees Page 69

Finding a BNode
 /* Assuming root points to the root of a binary tree, if item is !
 * in the tree, return the address of its node; otherwise, return NULL !
 */!
BNode * find(BNode * root, int item){ !
 if (root == NULL || root->item == item) !
 return root; !
 !
 if (item < root->item) !
 return find(root->left, item); !
 else!
 return find(root->right, item); !
}	

CPSC 259 Binary Trees Page 70

Finding a Bnode exercise
•  For the BST on the right draw the

recursion tree of find(ptrTo6, 5)

Find(ptrTo6, 5)

Find(ptrTo3, 5)

Find(ptrTo5, 5)

ptrTo5

ptrTo5

ptrTo5

6	

3	 7	

2	 5	 9	

CPSC 259 Binary Trees Page 71

Adding a BNode
/* Assuming root points to the root of a binary tree, and items are !
 * unique. !
void addNode(BNode * root, int item){ !
 !
 if (item < root->item){ !
 if (root->left) /* same as root->left!=NULL */!
 addNode(root->left, item); !
 else!
 root->left = makeNode(item, NULL, NULL); !
 } !
 !
 if (item > root->item){ !
 if (root->right) /* same as root->right!=NULL */!
 addNode(root->right, item); !
 else!
 root->right = makeNode(item, NULL, NULL); !
 } !
} !

CPSC 259 Binary Trees Page 72

Adding a Bnode exercise
•  For the BST on the right draw the

recursion tree of addNode(ptrTo6, 8) !

•  What happens if you attempt to add an
existing node ?

addNode(ptrTo6, 8)

addNode(ptrTo7, 8)

addNode(ptrTo9, 8)

makeNode(8, NULL, NULL

ptrTo8

6	

3	 7	

2	 5	 9	

CPSC 259 Binary Trees Page 73

Finding parent of a BNode
/** !
 * Finds the parent of node in the tree rooted at rootNode!
 */!
BNode* findParent(BNode * root, int item) !
{ !
 if (root == NULL || root->item == item) !
 return NULL; !
 !
 else if (root->left && (root->left->item == item)) !
 return root; !
 !
 else if (root->right && (root->right->item == item)) !
 return root; !
 !
 else if (item < root->item) !
 return findParent(root->left, item); !
 !
 else!
 return findParent(root->right, item); !
}	

CPSC 259 Binary Trees Page 74

Finding parent of a Bnode exercise
•  For the BST on the right draw the

recursion tree of findParent(ptrTo6, 5) !

•  What should be returned if we want to
find parent of 6?

findParent(ptrTo6, 5)

findParent(ptrTo3, 5)

ptrTo3

ptrTo3

6	

3	 7	

2	 5	 9	

CPSC 259 Binary Trees Page 75

Bonus: FindMin/FindMax
•  Find minimum

•  Find maximum 20	9	2	

15	5	

10	

30	7	 17	

BNode* findMin(BNode* root){ !
 if (!root) return NULL; !
 !
 else if (!root->left) return root; !
 !
 else!
 return findMin(root->left); !
}	

BNode* findMax(BNode* root){ !
 if (!root) return NULL; !
 !
 else if (!root->right) return root; !
!
 else!
 return findMax(root->right); !
}	

CPSC 259 Binary Trees Page 76

Double Bonus: Successor

Find the next larger node
in a node’s subtree.
 20	9	2	

15	5	

10	

30	7	 17	

BNode* findSucessor(BNode * theNode){ !
 if (theNode==NULL || theNode->right==NULL) !
 return NULL; !
 !
 else!
 return findMin(theNode->right); !
}	

CPSC 259 Binary Trees Page 77

More Double Bonus: Predecessor

Find the next smaller node
in a node’s subtree.

20	9	2	

15	5	

10	

30	7	 17	

BNode* findPredecessor(BNode * theNode){ !
 if (theNode==NULL || theNode->left==NULL) !
 return NULL; !
 !
 else!
 return findMax(theNode->left); !
}	

CPSC 259 Binary Trees Page 78

Deletion

20	9	2	

15	5	

10	

30	7	 17	

Why might deletion be harder than insertion?

CPSC 259 Binary Trees Page 79

Deleting a BNode
•  The task of removing a node from a binary tree is quite

complicated; therefore, we will break the task into parts.

struct BNode* deleteNode(struct BNode* root, int item) !
{ !
 struct BNode* target = find(root, item); !
 struct BNode* parent = findParent(root, item); !
!
 if (!target) !
 return root; /* item not in tree */ !
!

CPSC 259 Binary Trees Page 80

Deleting a BNode (leaf case)
•  Now that we have a pointer that points to the node to be

deleted, we proceed according to one of 4 cases:

•  Case 1: node to be deleted is a leaf
if (target->left == NULL && target->right ==NULL){ !
/* --------------------- leaf------------------ */!
 if (parent != NULL) !
 if (parent->left == target)) !
 parent ->left = NULL; !
 else!
 parent ->right = NULL; !
 !
 else // parent == NULL!
 root = NULL; !
 free(target); !
 return root; !
} !

CPSC 259 Binary Trees Page 81

Deleting a BNode (leaf case) exercise
•  Trace the code to see what the tree would

look like after deleteNode(ptrTo6, 5)has
been executed !

6	

3	 7	

5	 9	

6	

3	 7	

5	 9	

root	

target	

parent	

6	

3	 7	

9	

root	

target	

parent	

check to see which child of parent
needs to be updated to NULL

CPSC 259 Binary Trees Page 82

Deleting a BNode (one child)
•  Case 2: node to be deleted has only a left child

 if (target->left != NULL && target->right == NULL){ !
 /* ---------------- Only left child------------ */ !
 !
 if (parent != NULL) { !
 if (parent->left == target) !
 parent->left = target->left; !
 else!

parent->right = target->left; !
 } !
 else // parent == NULL!
 root = target->left; !
 !
 free(target); !
 return root; !
 } !

CPSC 259 Binary Trees Page 83

Deleting a BNode (one child)
•  Case 3: node to be deleted has only a right child

if (target->left == NULL && target->right !=NULL){ !
 /* ------------ Only right child------ */!
 !
 if (parent != NULL) { !
 if (parent->left == target) !
 parent->left = target->right; !
 else!
 parent->right = target->right; !
 } !
 else!
 root = target->right; !
 !
 free(target); !
 return root; !
} !

CPSC 259 Binary Trees Page 84

Deleting a BNode (one child) exercise
•  Trace the code to see what the tree would

look like after deleteNode(ptrTo6, 7) has
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	

target	

parent	

6	

3	 9	

2	 5	

root	

target	

parent	

CPSC 259 Binary Trees Page 85

Deleting a BNode (both children)
•  Case 4: node to be deleted has both a left and right child

•  This is the tricky case. There is no obvious way to remove
a node having two children and re-connect the tree.
Instead, we can choose not to delete the node, but rather
copy data from either a leaf node or one with just the left
child (which is easy to remove)

CPSC 259 Binary Trees Page 86

Deleting a BNode (both children)
 if (target->left != NULL && target->right != NULL) { !
 !
 /* find the replacing node and its parent */!
 BNode* pred = findPredecessor(target); !
 BNode* predParent = findParent(root, pred->item); !
 !
 target->item = pred->item; !
 if (target == predParent) /* replaced by left child */!
 predParent->left = pred->left; !
 else!
 /* could either be Null or temp has a left child */!
 predParent->right = pred->left; !
 !
 free(pred); !
 pred = NULL; !
 } !
 !
 return root; // return root when you're done. !
	

CPSC 259 Binary Trees Page 87

Deleting a BNode (both children) exercise
•  Trace the code to see what the tree would

look like after deleteNode(ptrTo6, 3) has
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	

target	

pred	

predParent	

6	

2	 7	

9	

root	

target	

pred	 predParent	

 predParent->left = pred->left; /* replaced by left child */!

5	

CPSC 259 Binary Trees Page 88

Deleting a BNode (both children) exercise
•  Trace the code to see what the tree would

look like after deleteNode(ptrTo6, 6) has
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	
target	

pred	

predParent	

5	

3	 7	

2	 9	

root	
target	

pred	 predParent	

 predParent->right = pred->left; !

CPSC 259 Binary Trees Page 89

Deleting a BNode (both children) exercise
•  Trace the code to see what the tree would

look like after deleteNode(ptrTo6, 6) has
been executed. !

6	

3	 7	

2	 5	 9	

6	

3	 7	

2	 5	 9	

root	
target	

pred	

predParent	

5	

3	 7	

2	 9	

root	
target	

pred	 predParent	

4	

4	

4	

Focus on this 4

 predParent->right = pred->left; !

CPSC 259 Binary Trees Page 90

In-class Exercise
•  Is this code correct? If yes, briefly justify your answer; if no,

draw a small tree for which the code gives the wrong answer.

// Returns 1 if the tree rooted at x is a BST, 0 otherwise!
int check_bst(Node * x){ !
 if (x == NULL) return 1; !
!
 if ((x->left != NULL) && (x->left->key > x->key)) !
 return 0; !
 if ((x->right != NULL) && (x->right->key < x->key)) !
 return 0; !
 !
 return check_bst(x->left) && check_bst(x->right); !
}	

CPSC 259 Binary Trees Page 91

In-class Exercise
// Returns 1 if the tree rooted at x is a BST, 0 otherwise!
int check_bst(Node * x){ !
 if (x == NULL) return 1; !
!
 if ((x->left != NULL) && (x->left->key > x->key)) !
 return 0; !
 if ((x->right != NULL) && (x->right->key < x->key)) !
 return 0; !
 !
 return check_bst(x->left) && check_bst(x->right); !
}	

CPSC 259 Binary Trees Page 92

An Application of pre-order traversing
•  Suppose we want to transmit our tree across the country to

another programmer. Sending the in-order list would tell
them the values, but would not communicate how the tree
is built.

•  All of the tree below have the in-order walk: 1 2 3. But
only one of the trees below has the pre-order walk 1 2 3.
–  Note that we expect the tree to hold the BST property

CPSC 259 Binary Trees Page 93

In-class exercise
•  Can you recover the binary search tree from its pre-

order traversal?
– 15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23

CPSC 259 Binary Trees Page 94

An Application of in-order traversing

6	

3	 7	

2	 5	 9	
Sorting values in a binary search tree

In-order = 2, 3, 5, 6, 7, 9

CPSC 259 Binary Trees Page 95

Traverse the tree in post-order (left, right, current)

 3 2 + 5 * 1 –

Use a stack to compute the value

–

* 1

+

23

5

An Application of post-order traversing

Character
scanned Stack

3 3
2 3, 2
+ 5
5 5, 5
* 25
1 25,1
- 24

CPSC 259 Binary Trees Page 96

Learning goals revisited
•  Provide examples of the types of problems for which tree data

structures are well-suited.
•  Describe and use preorder, inorder, and postorder tree traversal

algorithms.
•  Perform a binary search on an array iteratively and recursively.
•  Describe the properties of a binary search tree.
•  Determine if a given tree is an instance of a binary search tree.
•  Search for keys in a binary search tree.
•  Insert and delete keys from a binary search tree.
•  Describe the properties of binary trees and binary search trees; and

algorithms for navigating (e.g., searching, adding, deleting) them in
C.

